An Exclusion Principle for States of Equilibrium in the Lotka-Volterra System
نویسندگان
چکیده
منابع مشابه
The Inclusion-Exclusion Principle for IF-States
Applying two definitions of the union of IF-events, P. Grzegorzewski gave two generalizations of the inclusion-exclusion principle for IF-events.In this paper we prove an inclusion-exclusion principle for IF-states based on a method which can also be used to prove Grzegorzewski's inclusion-exclusion principle for probabilities on IF-events.Finally, we give some applications of this principle by...
متن کاملthe inclusion-exclusion principle for if-states
applying two definitions of the union of if-events, p. grzegorzewski gave two generalizations of the inclusion-exclusion principle for if-events.in this paper we prove an inclusion-exclusion principle for if-states based on a method which can also be used to prove grzegorzewski's inclusion-exclusion principle for probabilities on if-events.finally, we give some applications of this principle by...
متن کاملan application of equilibrium model for crude oil tanker ships insurance futures in iran
با توجه به تحریم های بین المملی علیه صنعت بیمه ایران امکان استفاده از بازارهای بین المملی بیمه ای برای نفتکش های ایرانی وجود ندارد. از طرفی از آنجایی که یکی از نوآوری های اخیر استفاده از بازارهای مالی به منظور ریسک های فاجعه آمیز می باشد. از اینرو در این پایان نامه سعی شده است با استفاده از این نوآوری ها با طراحی اوراق اختیارات راهی نو جهت بیمه گردن نفت کش های ایرانی ارائه نمود. از آنجایی که بر...
A Periodic Lotka-volterra System
In this paper periodic time-dependent Lotka-Volterra systems are considered. It is shown that such a system has positive periodic solutions. It is done without constructive conditions over the period and the parameters. 1. The Periodic Lotka-Volterra System. Consider the Predator-Prey model (see Volterra [1]) N ′ 1 = (ε1 − γ1N2)N1 N ′ 2 = (−ε2 + γ2N1)N2. (1) The functions N1 and N2 measure the ...
متن کاملNon-equilibrium relaxation in a stochastic lattice Lotka-Volterra model.
We employ Monte Carlo simulations to study a stochastic Lotka-Volterra model on a two-dimensional square lattice with periodic boundary conditions. If the (local) prey carrying capacity is finite, there exists an extinction threshold for the predator population that separates a stable active two-species coexistence phase from an inactive state wherein only prey survive. Holding all other rates ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Progress of Theoretical Physics
سال: 1989
ISSN: 0033-068X,1347-4081
DOI: 10.1143/ptp.81.7